3.1.32 \(\int \frac {\sqrt {a x^2+b x^3+c x^4}}{x} \, dx\)

Optimal. Leaf size=119 \[ \frac {(b+2 c x) \sqrt {a x^2+b x^3+c x^4}}{4 c x}-\frac {x \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 c^{3/2} \sqrt {a x^2+b x^3+c x^4}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {1918, 1914, 621, 206} \begin {gather*} \frac {(b+2 c x) \sqrt {a x^2+b x^3+c x^4}}{4 c x}-\frac {x \left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 c^{3/2} \sqrt {a x^2+b x^3+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*x^2 + b*x^3 + c*x^4]/x,x]

[Out]

((b + 2*c*x)*Sqrt[a*x^2 + b*x^3 + c*x^4])/(4*c*x) - ((b^2 - 4*a*c)*x*Sqrt[a + b*x + c*x^2]*ArcTanh[(b + 2*c*x)
/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(8*c^(3/2)*Sqrt[a*x^2 + b*x^3 + c*x^4])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1914

Int[(x_)^(m_.)/Sqrt[(b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.)], x_Symbol] :> Dist[(x^(q/2)*Sqrt[a
 + b*x^(n - q) + c*x^(2*(n - q))])/Sqrt[a*x^q + b*x^n + c*x^(2*n - q)], Int[x^(m - q/2)/Sqrt[a + b*x^(n - q) +
 c*x^(2*(n - q))], x], x] /; FreeQ[{a, b, c, m, n, q}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && ((EqQ[m, 1] &&
EqQ[n, 3] && EqQ[q, 2]) || ((EqQ[m + 1/2] || EqQ[m, 3/2] || EqQ[m, 1/2] || EqQ[m, 5/2]) && EqQ[n, 3] && EqQ[q,
 1]))

Rule 1918

Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[(x^(m - n + q
+ 1)*(b + 2*c*x^(n - q))*(a*x^q + b*x^n + c*x^(2*n - q))^p)/(2*c*(n - q)*(2*p + 1)), x] - Dist[(p*(b^2 - 4*a*c
))/(2*c*(2*p + 1)), Int[x^(m + q)*(a*x^q + b*x^n + c*x^(2*n - q))^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && Eq
Q[r, 2*n - q] && PosQ[n - q] &&  !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[p, 0] && RationalQ[m
, q] && EqQ[m + p*q + 1, n - q]

Rubi steps

\begin {align*} \int \frac {\sqrt {a x^2+b x^3+c x^4}}{x} \, dx &=\frac {(b+2 c x) \sqrt {a x^2+b x^3+c x^4}}{4 c x}-\frac {\left (b^2-4 a c\right ) \int \frac {x}{\sqrt {a x^2+b x^3+c x^4}} \, dx}{8 c}\\ &=\frac {(b+2 c x) \sqrt {a x^2+b x^3+c x^4}}{4 c x}-\frac {\left (\left (b^2-4 a c\right ) x \sqrt {a+b x+c x^2}\right ) \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{8 c \sqrt {a x^2+b x^3+c x^4}}\\ &=\frac {(b+2 c x) \sqrt {a x^2+b x^3+c x^4}}{4 c x}-\frac {\left (\left (b^2-4 a c\right ) x \sqrt {a+b x+c x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{4 c \sqrt {a x^2+b x^3+c x^4}}\\ &=\frac {(b+2 c x) \sqrt {a x^2+b x^3+c x^4}}{4 c x}-\frac {\left (b^2-4 a c\right ) x \sqrt {a+b x+c x^2} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 c^{3/2} \sqrt {a x^2+b x^3+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 100, normalized size = 0.84 \begin {gather*} \frac {x \left (2 \sqrt {c} (b+2 c x) (a+x (b+c x))-\left (b^2-4 a c\right ) \sqrt {a+x (b+c x)} \log \left (2 \sqrt {c} \sqrt {a+x (b+c x)}+b+2 c x\right )\right )}{8 c^{3/2} \sqrt {x^2 (a+x (b+c x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*x^2 + b*x^3 + c*x^4]/x,x]

[Out]

(x*(2*Sqrt[c]*(b + 2*c*x)*(a + x*(b + c*x)) - (b^2 - 4*a*c)*Sqrt[a + x*(b + c*x)]*Log[b + 2*c*x + 2*Sqrt[c]*Sq
rt[a + x*(b + c*x)]]))/(8*c^(3/2)*Sqrt[x^2*(a + x*(b + c*x))])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.12, size = 116, normalized size = 0.97 \begin {gather*} \frac {\log (x) \left (4 a c-b^2\right )}{8 c^{3/2}}+\frac {\left (b^2-4 a c\right ) \log \left (-2 c^{3/2} \sqrt {a x^2+b x^3+c x^4}+b c x+2 c^2 x^2\right )}{8 c^{3/2}}+\frac {(b+2 c x) \sqrt {a x^2+b x^3+c x^4}}{4 c x} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[a*x^2 + b*x^3 + c*x^4]/x,x]

[Out]

((b + 2*c*x)*Sqrt[a*x^2 + b*x^3 + c*x^4])/(4*c*x) + ((-b^2 + 4*a*c)*Log[x])/(8*c^(3/2)) + ((b^2 - 4*a*c)*Log[b
*c*x + 2*c^2*x^2 - 2*c^(3/2)*Sqrt[a*x^2 + b*x^3 + c*x^4]])/(8*c^(3/2))

________________________________________________________________________________________

fricas [A]  time = 1.11, size = 220, normalized size = 1.85 \begin {gather*} \left [-\frac {{\left (b^{2} - 4 \, a c\right )} \sqrt {c} x \log \left (-\frac {8 \, c^{2} x^{3} + 8 \, b c x^{2} + 4 \, \sqrt {c x^{4} + b x^{3} + a x^{2}} {\left (2 \, c x + b\right )} \sqrt {c} + {\left (b^{2} + 4 \, a c\right )} x}{x}\right ) - 4 \, \sqrt {c x^{4} + b x^{3} + a x^{2}} {\left (2 \, c^{2} x + b c\right )}}{16 \, c^{2} x}, \frac {{\left (b^{2} - 4 \, a c\right )} \sqrt {-c} x \arctan \left (\frac {\sqrt {c x^{4} + b x^{3} + a x^{2}} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{3} + b c x^{2} + a c x\right )}}\right ) + 2 \, \sqrt {c x^{4} + b x^{3} + a x^{2}} {\left (2 \, c^{2} x + b c\right )}}{8 \, c^{2} x}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^3+a*x^2)^(1/2)/x,x, algorithm="fricas")

[Out]

[-1/16*((b^2 - 4*a*c)*sqrt(c)*x*log(-(8*c^2*x^3 + 8*b*c*x^2 + 4*sqrt(c*x^4 + b*x^3 + a*x^2)*(2*c*x + b)*sqrt(c
) + (b^2 + 4*a*c)*x)/x) - 4*sqrt(c*x^4 + b*x^3 + a*x^2)*(2*c^2*x + b*c))/(c^2*x), 1/8*((b^2 - 4*a*c)*sqrt(-c)*
x*arctan(1/2*sqrt(c*x^4 + b*x^3 + a*x^2)*(2*c*x + b)*sqrt(-c)/(c^2*x^3 + b*c*x^2 + a*c*x)) + 2*sqrt(c*x^4 + b*
x^3 + a*x^2)*(2*c^2*x + b*c))/(c^2*x)]

________________________________________________________________________________________

giac [A]  time = 0.95, size = 125, normalized size = 1.05 \begin {gather*} \frac {1}{8} \, {\left (2 \, \sqrt {c x^{2} + b x + a} {\left (2 \, x + \frac {b}{c}\right )} + \frac {{\left (b^{2} - 4 \, a c\right )} \log \left ({\left | -2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} \sqrt {c} - b \right |}\right )}{c^{\frac {3}{2}}}\right )} \mathrm {sgn}\relax (x) - \frac {{\left (b^{2} \log \left ({\left | -b + 2 \, \sqrt {a} \sqrt {c} \right |}\right ) - 4 \, a c \log \left ({\left | -b + 2 \, \sqrt {a} \sqrt {c} \right |}\right ) + 2 \, \sqrt {a} b \sqrt {c}\right )} \mathrm {sgn}\relax (x)}{8 \, c^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^3+a*x^2)^(1/2)/x,x, algorithm="giac")

[Out]

1/8*(2*sqrt(c*x^2 + b*x + a)*(2*x + b/c) + (b^2 - 4*a*c)*log(abs(-2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*sqrt(c
) - b))/c^(3/2))*sgn(x) - 1/8*(b^2*log(abs(-b + 2*sqrt(a)*sqrt(c))) - 4*a*c*log(abs(-b + 2*sqrt(a)*sqrt(c))) +
 2*sqrt(a)*b*sqrt(c))*sgn(x)/c^(3/2)

________________________________________________________________________________________

maple [A]  time = 0.00, size = 146, normalized size = 1.23 \begin {gather*} \frac {\sqrt {c \,x^{4}+b \,x^{3}+a \,x^{2}}\, \left (4 a \,c^{2} \ln \left (\frac {2 c x +b +2 \sqrt {c \,x^{2}+b x +a}\, \sqrt {c}}{2 \sqrt {c}}\right )-b^{2} c \ln \left (\frac {2 c x +b +2 \sqrt {c \,x^{2}+b x +a}\, \sqrt {c}}{2 \sqrt {c}}\right )+4 \sqrt {c \,x^{2}+b x +a}\, c^{\frac {5}{2}} x +2 \sqrt {c \,x^{2}+b x +a}\, b \,c^{\frac {3}{2}}\right )}{8 \sqrt {c \,x^{2}+b x +a}\, c^{\frac {5}{2}} x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^3+a*x^2)^(1/2)/x,x)

[Out]

1/8*(c*x^4+b*x^3+a*x^2)^(1/2)*(4*(c*x^2+b*x+a)^(1/2)*c^(5/2)*x+2*(c*x^2+b*x+a)^(1/2)*c^(3/2)*b+4*ln(1/2*(2*c*x
+b+2*(c*x^2+b*x+a)^(1/2)*c^(1/2))/c^(1/2))*a*c^2-ln(1/2*(2*c*x+b+2*(c*x^2+b*x+a)^(1/2)*c^(1/2))/c^(1/2))*b^2*c
)/(c*x^2+b*x+a)^(1/2)/c^(5/2)/x

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c x^{4} + b x^{3} + a x^{2}}}{x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^3+a*x^2)^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^4 + b*x^3 + a*x^2)/x, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {c\,x^4+b\,x^3+a\,x^2}}{x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x^2 + b*x^3 + c*x^4)^(1/2)/x,x)

[Out]

int((a*x^2 + b*x^3 + c*x^4)^(1/2)/x, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {x^{2} \left (a + b x + c x^{2}\right )}}{x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**3+a*x**2)**(1/2)/x,x)

[Out]

Integral(sqrt(x**2*(a + b*x + c*x**2))/x, x)

________________________________________________________________________________________